Abelian Theorems
For any summation method L, its abelian theorem is the result that if c = (cn) is a convergent sequence, with limit C, then L(c) = C. An example is given by the Cesàro method, in which L is defined as the limit of the arithmetic means of the first N terms of c, as N tends to infinity. One can prove that if c does converge to C, then so does the sequence (dN) where
- dN = (c1 + c2 + ... + cN)/N.
To see that, subtract C everywhere to reduce to the case C = 0. Then divide the sequence into an initial segment, and a tail of small terms: given any ε > 0 we can take M large enough to make the initial segment of terms up to cN average to at most ε/2, while each term in the tail is bounded by ε/2 so that the average is also.
The name derives from Abel's theorem on power series. In that case L is the radial limit (thought of within the complex unit disk), where we let r tend to the limit 1 from below along the real axis in the power series with term
- anzn
and set z = r·e iθ. That theorem has its main interest in the case that the power series has radius of convergence exactly 1: if the radius of convergence is greater than one, the convergence of the power series is uniform for r in so that the sum is automatically continuous and it follows directly that the limit as r tends up to 1 is simply the sum of the an. When the radius is 1 the power series will have some singularity on |z| = 1; the assertion is that, nonetheless, if the sum of the an exists, it is equal to the limit over r. This therefore fits exactly into the abstract picture.
Read more about this topic: Abelian And Tauberian Theorems