22 Equal Temperament - Interval Size

Interval Size

Here are the sizes of some common intervals in this system:

interval name size (steps) size (cents) just ratio just (cents) error
perfect fifth 13 709.09 3:2 701.95 +7.14
septendecimal tritone 11 600 17:12 603.00 −3.00
septimal tritone 11 600 7:5 582.51 +17.49
11:8 wide fourth 10 545.45 11:8 551.32 −5.87
15:11 wide fourth 10 545.45 15:11 536.95 +8.50
perfect fourth 9 490.91 4:3 498.05 −7.14
septendecimal supermajor third 8 436.36 22:17 446.36 −10.00
septimal major third 8 436.36 9:7 435.08 +1.28
undecimal major third 8 436.36 14:11 417.51 +18.86
major third 7 381.82 5:4 386.31 −4.49
undecimal neutral third 6 327.27 11:9 347.41 −20.14
septendecimal supraminor third 6 327.27 17:14 336.13 −8.86
minor third 6 327.27 6:5 315.64 +11.63
septendecimal augmented second 5 272.73 20:17 281.36 −8.63
septimal minor third 5 272.73 7:6 266.88 +5.85
septimal whole tone 4 218.18 8:7 231.17 −12.99
(17:15) ratio 4 218.18 17:15 216.69 +1.50
whole tone, major tone 4 218.18 9:8 203.91 +14.27
whole tone, minor tone 3 163.63 10:9 182.40 −18.77
neutral second, greater undecimal 3 163.64 11:10 165.00 −1.37
neutral second, lesser undecimal 3 163.64 12:11 150.64 +13.00
septimal diatonic semitone 2 109.09 15:14 119.44 −10.35
diatonic semitone, just 2 109.09 16:15 111.73 −2.64
17th harmonic 2 109.09 17:16 104.95 +4.13
Arabic lute index finger 2 109.09 18:17 98.95 +10.14
septimal chromatic semitone 2 109.09 21:20 84.47 +24.62
chromatic semitone, just 1 54.55 25:24 70.67 −16.13
septimal third-tone 1 54.55 28:27 62.96 −8.42
undecimal quarter tone 1 54.55 33:32 53.27 +1.27
septimal quarter tone 1 54.55 36:35 48.77 +5.78

Read more about this topic:  22 Equal Temperament

Famous quotes containing the words interval and/or size:

    [I have] been in love with one princess or another almost all my life, and I hope I shall go on so, till I die, being firmly persuaded, that if ever I do a mean action, it must be in some interval betwixt one passion and another.
    Laurence Sterne (1713–1768)

    In mathematics he was greater
    Than Tycho Brahe, or Erra Pater:
    For he, by geometric scale,
    Could take the size of pots of ale;
    Resolve, by sines and tangents straight,
    If bread and butter wanted weight;
    And wisely tell what hour o’ th’ day
    The clock doth strike, by algebra.
    Samuel Butler (1612–1680)