Probability Density Function - Sums of Independent Random Variables

Sums of Independent Random Variables

See also: Convolution and List of convolutions of probability distributions

The probability density function of the sum of two independent random variables U and V, each of which has a probability density function, is the convolution of their separate density functions:


f_{U+V}(x) = \int_{-\infty}^\infty f_U(y) f_V(x - y)\,dy
= \left( f_{U} * f_{V} \right) (x)

It is possible to generalize the previous relation to a sum of N independent random variables, with densities U1, …, UN:


f_{U_{1} + \dotsb + U_{N}}(x)
= \left( f_{U_{1}} * \dotsb * f_{U_{N}} \right) (x)

This can be derived from a two-way change of variables involving Y=U+V and Z=V, similarly to the example below for the quotient of independent random variables.

Read more about this topic:  Probability Density Function

Famous quotes containing the words sums, independent, random and/or variables:

    If God lived on earth, people would break his windows.
    Jewish proverb, quoted in Claud Cockburn, Cockburn Sums Up, epigraph (1981)

    Whether changes in the sibling relationship during adolescence create long-term rifts that spill over into adulthood depends upon the ability of brothers and sisters to constantly redefine their connection. Siblings either learn to accept one another as independent individuals with their own sets of values and behaviors or cling to the shadow of the brother and sister they once knew.
    Jane Mersky Leder (20th century)

    Novels as dull as dishwater, with the grease of random sentiments floating on top.
    Italo Calvino (1923–1985)

    The variables of quantification, ‘something,’ ‘nothing,’ ‘everything,’ range over our whole ontology, whatever it may be; and we are convicted of a particular ontological presupposition if, and only if, the alleged presuppositum has to be reckoned among the entities over which our variables range in order to render one of our affirmations true.
    Willard Van Orman Quine (b. 1908)