In probability theory and statistics, the cumulative distribution function (CDF), or just distribution function, describes the probability that a real-valued random variable X with a given probability distribution will be found at a value less than or equal to x. Intuitively, it is the "area so far" function of the probability distribution. Cumulative distribution functions are also used to specify the distribution of multivariate random variables.
Read more about Cumulative Distribution Function: Definition, Properties, Examples, Multivariate Case, Use in Statistical Analysis
Famous quotes containing the words cumulative, distribution and/or function:
“Raising children is an incredibly hard and risky business in which no cumulative wisdom is gained: each generation repeats the mistakes the previous one made.”
—Bill Cosby (20th century)
“In this distribution of functions, the scholar is the delegated intellect. In the right state, he is, Man Thinking. In the degenerate state, when the victim of society, he tends to become a mere thinker, or, still worse, the parrot of other mens thinking.”
—Ralph Waldo Emerson (18031882)
“The function of muscle is to pull and not to push, except in the case of the genitals and the tongue.”
—Leonardo Da Vinci (14251519)