John Tyndall - Educator

Educator

Besides being a scientist, John Tyndall was a science teacher and evangelist for the cause of science. He spent a significant amount of his time disseminating science to the general public — contributing over the years to science columns in popular middle class periodicals such as the Athenaeum and the Saturday Review in the UK, and Popular Science Monthly in the USA; and giving hundreds of public lectures to non-specialist audiences at the Royal Institution. When he went on a public lecture tour in the USA in 1872, large crowds paid fees to hear him lecture about the nature of light. A typical statement of Tyndall's reputation at the time is this from a London publication in 1878: "Following the precedent set by Faraday, Professor Tyndall has succeeded not only in original investigation and in teaching science soundly and accurately, but in making it attractive.... When he lectures at the Royal Institution the theatre is crowded." Tyndall said of the occupation of teacher "I do not know a higher, nobler, and more blessed calling." His greatest audience was gained ultimately through his books, most of which were not written for experts or specialists. He published 17 science books. From the mid-1860s on, he was one of the world's most famous living physicists, due firstly to his skill and industry as a tutorialist. Most of his books were translated into German and French with his main tutorials staying in print in those languages for decades.

As an indicator of his teaching attitude, here are his concluding remarks to the reader at the end of a 200-page tutorial book (1872): "Here, my friend, our labours close. It has been a true pleasure to me to have you at my side so long. In the sweat of our brows we have often reached the heights where our work lay, but you have been steadfast and industrious throughout, using in all possible cases your own muscles instead of relying upon mine. Here and there I have stretched an arm and helped you to a ledge, but the work of climbing has been almost exclusively your own. It is thus that I should like to teach you all things; showing you the way to profitable exertion, but leaving the exertion to you.... Our task seems plain enough, but you and I know how often we have had to wrangle resolutely with the facts to bring out their meaning. The work, however, is now done, and you are master of a fragment of that sure and certain knowledge which is founded on the faithful study of nature.... Here then we part. And should we not meet again, the memory of these days will still unite us. Give me your hand. Good bye."

As another indicator, here is the opening paragraph of his 350-page tutorial entitled Sound (1867): "In the following pages I have tried to render the science of acoustics interesting to all intelligent persons, including those who do not possess any special scientific culture. The subject is treated experimentally throughout, and I have endeavoured so to place each experiment before the reader that he should realise it as an actual operation." In the preface to the 3rd edition of this book he reports that earlier editions were translated into Chinese at the expense of the Chinese government; and translated into German under the supervision of Hermann von Helmholtz (a big name in the science of acoustics). His first published tutorial, which was about glaciers (1860), similarly states: "The work is written with a desire to interest intelligent persons who may not possess any special scientific culture."

His most widely praised tutorial, and perhaps also his biggest seller, was the 550-page "Heat: a Mode of Motion" (1863; updated editions until 1880). It was in print for at least 50 years, and is in print today. Its primary feature is as James Clerk Maxwell said, "the doctrines of the science are forcibly impressed on the mind by well-chosen illustrative experiments."

His three longest tutorials, namely Heat (1863), Sound (1867), and Light (1873), represented state-of-the-art experimental physics at the time they were written. Much of their contents were recent major innovations in the understanding of their respective subjects, which Tyndall was the first writer to present to a wider audience. One caveat is called for about the meaning of "state of the art". The books were devoted to laboratory science and they avoided mathematics. In particular, they contain absolutely no infinitesimal calculus. Mathematical modeling using infinitesimal calculus, especially differential equations, was a component of the state-of-the-art understanding of heat, light and sound at the time.

Read more about this topic:  John Tyndall