Existential Quantification - Properties - Rules of Inference

Transformation rules
Propositional calculus

Rules of inference
Modus ponens
Modus tollens
Biconditional introduction
Biconditional elimination
Conjunction introduction
Simplification
Disjunction introduction
Disjunction elimination
Disjunctive syllogism
Hypothetical syllogism
Constructive dilemma
Destructive dilemma
Absorption

Rules of replacement

Associativity
Commutativity
Distributivity
Double negation
De Morgan's laws
Transposition
Material implication
Exportation
Tautology
Predicate logic
Universal generalization
Universal instantiation
Existential generalization
Existential instantiation

A rule of inference is a rule justifying a logical step from hypothesis to conclusion. There are several rules of inference which utilize the existential quantifier.

Existential introduction (∃I) concludes that, if the propositional function is known to be true for a particular element of the domain of discourse, then it must be true that there exists an element for which the proposition function is true. Symbolically,

The reasoning behind existential elimination (∃E) is as follows: If it is given that there exists an element for which the proposition function is true, and if a conclusion can be reached by giving that element an arbitrary name, that conclusion is necessarily true, as long as it does not contain the name. Symbolically, for an arbitrary c and for a proposition Q in which c does not appear:

must be true for all values of c over the same domain X; else, the logic does not follow: If c is not arbitrary, and is instead a specific element of the domain of discourse, then stating P(c) might unjustifiably give more information about that object.

Read more about this topic:  Existential Quantification, Properties

Famous quotes containing the words rules of, rules and/or inference:

    Each person calls barbarism whatever is not his or her own practice.... We may call Cannibals barbarians, in respect to the rules of reason, but not in respect to ourselves, who surpass them in every kind of barbarity.
    Michel de Montaigne (1533–1592)

    One might get the impression that I recommend a new methodology which replaces induction by counterinduction and uses a multiplicity of theories, metaphysical views, fairy tales, instead of the customary pair theory/observation. This impression would certainly be mistaken. My intention is not to replace one set of general rules by another such set: my intention is rather to convince the reader that all methodologies, even the most obvious ones, have their limits.
    Paul Feyerabend (1924–1994)

    I shouldn’t want you to be surprised, or to draw any particular inference from my making speeches, or not making speeches, out there. I don’t recall any candidate for President that ever injured himself very much by not talking.
    Calvin Coolidge (1872–1933)