Consistency - Consistency and Completeness in Arithmetic and Set Theory

Consistency and Completeness in Arithmetic and Set Theory

In theories of arithmetic, such as Peano arithmetic, there is an intricate relationship between the consistency of the theory and its completeness. A theory is complete if, for every formula φ in its language, at least one of φ or ¬ φ is a logical consequence of the theory.

Presburger arithmetic is an axiom system for the natural numbers under addition. It is both consistent and complete.

Gödel's incompleteness theorems show that any sufficiently strong effective theory of arithmetic cannot be both complete and consistent. Gödel's theorem applies to the theories of Peano arithmetic (PA) and Primitive recursive arithmetic (PRA), but not to Presburger arithmetic.

Moreover, Gödel's second incompleteness theorem shows that the consistency of sufficiently strong effective theories of arithmetic can be tested in a particular way. Such a theory is consistent if and only if it does not prove a particular sentence, called the Gödel sentence of the theory, which is a formalized statement of the claim that the theory is indeed consistent. Thus the consistency of a sufficiently strong, effective, consistent theory of arithmetic can never be proven in that system itself. The same result is true for effective theories that can describe a strong enough fragment of arithmetic – including set theories such as Zermelo–Fraenkel set theory. These set theories cannot prove their own Gödel sentences – provided that they are consistent, which is generally believed.

Because consistency of ZF is not provable in ZF, the weaker notion relative consistency is interesting in set theory (and in other sufficiently expressive axiomatic systems). If T is a theory and A is an additional axiom, T + A is said to be consistent relative to T (or simply that A is consistent with T) if it can be proved that if T is consistent then T + A is consistent. If both A and ¬A are consistent with T, then A is said to be independent of T.

Read more about this topic:  Consistency

Famous quotes containing the words consistency, completeness, arithmetic, set and/or theory:

    The lawyer’s truth is not Truth, but consistency or a consistent expediency.
    Henry David Thoreau (1817–1862)

    Poetry presents indivisible wholes of human consciousness, modified and ordered by the stringent requirements of form. Prose, aiming at a definite and concrete goal, generally suppresses everything inessential to its purpose; poetry, existing only to exhibit itself as an aesthetic object, aims only at completeness and perfection of form.
    Richard Harter Fogle, U.S. critic, educator. The Imagery of Keats and Shelley, ch. 1, University of North Carolina Press (1949)

    Under the dominion of an idea, which possesses the minds of multitudes, as civil freedom, or the religious sentiment, the power of persons are no longer subjects of calculation. A nation of men unanimously bent on freedom, or conquest, can easily confound the arithmetic of statists, and achieve extravagant actions, out of all proportion to their means; as, the Greeks, the Saracens, the Swiss, the Americans, and the French have done.
    Ralph Waldo Emerson (1803–1882)

    So far no actual revolutionary masses have come into view. This might be considered sufficient reason for reproaching someone who has set out to describe a revolution. But it is not our fault. This is, after all, a German revolution.
    Alfred Döblin (1878–1957)

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)