Use With One-dimensional Data Structures For Range Searching
Although preserving locality well, for efficient range searches an algorithm is necessary for calculating, from a point encountered in the data structure, the next Z-value which is in the multidimensional search range:
In this example, the range being queried (x = 2, ..., 3, y = 2, ..., 6) is indicated by the dotted rectangle. Its highest Z-value (MAX) is 45. In this example, the value F = 19 is encountered when searching a data structure in increasing Z-value direction, so we would have to search in the interval between F and MAX (hatched area). To speed up the search, one would calculate the next Z-value which is in the search range, called BIGMIN (36 in the example) and only search in the interval between BIGMIN and MAX (bold values), thus skipping most of the hatched area. Searching in decreasing direction is analogous with LITMAX which is the highest Z-value in the query range lower than F. The BIGMIN problem has first been stated and its solution shown in Tropf and Herzog. This solution is also used in UB-trees ("GetNextZ-address"). As the approach does not depend on the one dimensional data structure chosen, there is still free choice of structuring the data, so well known methods such as balanced trees can be used to cope with dynamic data (in contrast for example to R-trees where special considerations are necessary). Similarly, this independence makes it easier to incorporate the method into existing databases.
Applying the method hierarchically (according to the data structure at hand), optionally in both increasing and decreasing direction, yields highly efficient multidimensional range search which is important in both commercial and technical applications, e.g. as a procedure underlying nearest neighbour searches. Z-order is one of the few multidimensional access methods that has found its way into commercial database systems (Oracle database 1995, Transbase 2000 ).
As long ago as 1966, G.M.Morton proposed Z-order for file sequencing of a static two dimensional geographical database. Areal data units are contained in one or a few quadratic frames represented by their sizes and lower right corner Z-values, the sizes complying with the Z-order hierarchy at the corner position. With high probability, changing to an adjacent frame is done with one or a few relatively small scanning steps.
Read more about this topic: Z-order Curve
Famous quotes containing the words data, structures, range and/or searching:
“This city is neither a jungle nor the moon.... In long shot: a cosmic smudge, a conglomerate of bleeding energies. Close up, it is a fairly legible printed circuit, a transistorized labyrinth of beastly tracks, a data bank for asthmatic voice-prints.”
—Susan Sontag (b. 1933)
“It is clear that all verbal structures with meaning are verbal imitations of that elusive psychological and physiological process known as thought, a process stumbling through emotional entanglements, sudden irrational convictions, involuntary gleams of insight, rationalized prejudices, and blocks of panic and inertia, finally to reach a completely incommunicable intuition.”
—Northrop Frye (b. 1912)
“During the cattle drives, Texas cowboy music came into national significance. Its practical purpose is well knownit was used primarily to keep the herds quiet at night, for often a ballad sung loudly and continuously enough might prevent a stampede. However, the cowboy also sang because he liked to sing.... In this music of the range and trail is the grayness of the prairies, the mournful minor note of a Texas norther, and a rhythm that fits the gait of the cowboys pony.”
—Administration in the State of Texa, U.S. public relief program (1935-1943)
“It is the essence of truth that it is never excessive. Why should it exaggerate? There is that which should be destroyed and that which should be simply illuminated and studied. How great is the force of benevolent and searching examination! We must not resort to the flame where only light is required.”
—Victor Hugo (18021885)