Z-order Curve
In mathematical analysis and computer science, Z-order, Morton order, or Morton code is a function which maps multidimensional data to one dimension while preserving locality of the data points. It was introduced in 1966 by G. M. Morton. The z-value of a point in multidimensions is simply calculated by interleaving the binary representations of its coordinate values. Once the data are sorted into this ordering, any one-dimensional data structure can be used such as binary search trees, B-trees, skip lists or (with low significant bits truncated) hash tables. The resulting ordering can equivalently be described as the order one would get from a depth-first traversal of a quadtree; because of its close connection with quadtrees, the Z-ordering can be used to efficiently construct quadtrees and related higher dimensional data structures.
Read more about Z-order Curve: Coordinate Values, Efficiently Building Quadtrees, Use With One-dimensional Data Structures For Range Searching, Related Structures, Applications in Linear Algebra
Famous quotes containing the word curve:
“I have been photographing our toilet, that glossy enameled receptacle of extraordinary beauty.... Here was every sensuous curve of the human figure divine but minus the imperfections. Never did the Greeks reach a more significant consummation to their culture, and it somehow reminded me, in the glory of its chaste convulsions and in its swelling, sweeping, forward movement of finely progressing contours, of the Victory of Samothrace.”
—Edward Weston (18861958)