Wound Healing - Proliferative Phase - Epithelialization

Epithelialization

The formation of granulation tissue in an open wound allows the reepithelialization phase to take place, as epithelial cells migrate across the new tissue to form a barrier between the wound and the environment. Basal keratinocytes from the wound edges and dermal appendages such as hair follicles, sweat glands and sebacious (oil) glands are the main cells responsible for the epithelialization phase of wound healing. They advance in a sheet across the wound site and proliferate at its edges, ceasing movement when they meet in the middle. Though in healing that results in a scar, sweat glands and hair follicles do not form.

Keratinocytes migrate without first proliferating. Migration can begin as early as a few hours after wounding. However, epithelial cells require viable tissue to migrate across, so if the wound is deep it must first be filled with granulation tissue. Thus the time of onset of migration is variable and may occur about one day after wounding. Cells on the wound margins proliferate on the second and third day post-wounding in order to provide more cells for migration.

If the basement membrane is not breached, epithelial cells are replaced within three days by division and upward migration of cells in the stratum basale in the same fashion that occurs in uninjured skin. However, if the basement membrane is ruined at the wound site, reepithelization must occur from the wound margins and from skin appendages such as hair follicles and sweat and oil glands that enter the dermis that are lined with viable keratinocytes. If the wound is very deep, skin appendages may also be ruined and migration can only occur from wound edges.

Migration of keratinocytes over the wound site is stimulated by lack of contact inhibition and by chemicals such as nitric oxide. Before they begin to migrate, cells must dissolve their desmosomes and hemidesmosomes, which normally anchor the cells by intermediate filaments in their cytoskeleton to other cells and to the ECM. Transmembrane receptor proteins called integrins, which are made of glycoproteins and normally anchor the cell to the basement membrane by its cytoskeleton, are released from the cell's intermediate filaments and relocate to actin filaments to serve as attachments to the ECM for pseudopodia during migration. Thus keratinocytes detach from the basement membrane and are able to enter the wound bed.

Before they begin migrating, keratinocytes change shape, becoming longer and flatter and extending cellular processes like lamellipodia and wide processes that look like ruffles. Actin filaments and pseudopodia form. During migration, integrins on the pseudopod attach to the ECM, and the actin filaments in the projection pull the cell along. The interaction with molecules in the ECM through integrins further promotes the formation of actin filaments, lamellipodia, and filopodia.

Epithelial cells climb over one another in order to migrate. This growing sheet of epithelial cells is often called the epithelial tongue. The first cells to attach to the basement membrane form the stratum basale. These basal cells continue to migrate across the wound bed, and epithelial cells above them slide along as well. The more quickly this migration occurs, the less of a scar there will be.

Fibrin, collagen, and fibronectin in the ECM may further signal cells to divide and migrate. Like fibroblasts, migrating keratinocytes use the fibronectin cross-linked with fibrin that was deposited in inflammation as an attachment site to crawl across.

As keratinocytes migrate, they move over granulation tissue but underneath the scab (if one was formed), separating it from the underlying tissue. Epithelial cells have the ability to phagocytize debris such as dead tissue and bacterial matter that would otherwise obstruct their path. Because they must dissolve any scab that forms, keratinocyte migration is best enhanced by a moist environment, since a dry one leads to formation of a bigger, tougher scab. To make their way along the tissue, keratinocytes must dissolve the clot, debris, and parts of the ECM in order to get through. They secrete plasminogen activator, which activates plasminogen, turning it into plasmin to dissolve the scab. Cells can only migrate over living tissue, so they must excrete collagenases and proteases like matrix metalloproteinases (MMPs) to dissolve damaged parts of the ECM in their way, particularly at the front of the migrating sheet. Keratinocytes also dissolve the basement membrane, using instead the new ECM laid down by fibroblasts to crawl across.

As keratinocytes continue migrating, new epithelial cells must be formed at the wound edges to replace them and to provide more cells for the advancing sheet. Proliferation behind migrating keratinocytes normally begins a few days after wounding and occurs at a rate that is 17 times higher in this stage of epithelialization than in normal tissues. Until the entire wound area is resurfaced, the only epithelial cells to proliferate are at the wound edges.

Growth factors, stimulated by integrins and MMPs, cause cells to proliferate at the wound edges. Keratinocytes themselves also produce and secrete factors, including growth factors and basement membrane proteins, which aid both in epithelialization and in other phases of healing. Growth factors are also important for the innate immune defense of skin wounds by stimulation of the production of antimicrobial peptides and neutrophil chemotactic cytokines in keratinocytes.

Keratinocytes continue migrating across the wound bed until cells from either side meet in the middle, at which point contact inhibition causes them to stop migrating. When they have finished migrating, the keratinocytes secrete the proteins that form the new basement membrane. Cells reverse the morphological changes they underwent in order to begin migrating; they reestablish desmosomes and hemidesmosomes and become anchored once again to the basement membrane. Basal cells begin to divide and differentiate in the same manner as they do in normal skin to reestablish the strata found in reepithelialized skin.

Read more about this topic:  Wound Healing, Proliferative Phase