Wigner Semicircle Distribution - Relation To Free Probability

Relation To Free Probability

In free probability theory, the role of Wigner's semicircle distribution is analogous to that of the normal distribution in classical probability theory. Namely, in free probability theory, the role of cumulants is occupied by "free cumulants", whose relation to ordinary cumulants is simply that the role of the set of all partitions of a finite set in the theory of ordinary cumulants is replaced by the set of all noncrossing partitions of a finite set. Just the cumulants of degree more than 2 of a probability distribution are all zero if and only if the distribution is normal, so also, the free cumulants of degree more than 2 of a probability distribution are all zero if and only if the distribution is Wigner's semicircle distribution.

Read more about this topic:  Wigner Semicircle Distribution

Famous quotes containing the words relation to, relation, free and/or probability:

    You must realize that I was suffering from love and I knew him as intimately as I knew my own image in a mirror. In other words, I knew him only in relation to myself.
    Angela Carter (1940–1992)

    There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.
    Umberto Eco (b. 1932)

    The modern picture of The Artist began to form: The poor, but free spirit, plebeian but aspiring only to be classless, to cut himself forever free from the bonds of the greedy bourgeoisie, to be whatever the fat burghers feared most, to cross the line wherever they drew it, to look at the world in a way they couldn’t see, to be high, live low, stay young forever—in short, to be the bohemian.
    Tom Wolfe (b. 1931)

    Liberty is a blessing so inestimable, that, wherever there appears any probability of recovering it, a nation may willingly run many hazards, and ought not even to repine at the greatest effusion of blood or dissipation of treasure.
    David Hume (1711–1776)