Wigner Semicircle Distribution

The Wigner semicircle distribution, named after the physicist Eugene Wigner, is the probability distribution supported on the interval the graph of whose probability density function f is a semicircle of radius R centered at (0, 0) and then suitably normalized (so that it is really a semi-ellipse):

for −R < x < R, and f(x) = 0 if x > R or x < − R.

This distribution arises as the limiting distribution of eigenvalues of many random symmetric matrices as the size of the matrix approaches infinity.

It is a scaled beta distribution, more precisely, if Y is beta distributed with parameters α = β = 3/2, then X = 2RYR has the above Wigner semicircle distribution.

Read more about Wigner Semicircle Distribution:  General Properties, Relation To Free Probability

Famous quotes containing the word distribution:

    There is the illusion of time, which is very deep; who has disposed of it? Mor come to the conviction that what seems the succession of thought is only the distribution of wholes into causal series.
    Ralph Waldo Emerson (1803–1882)