Wigner Semicircle Distribution

The Wigner semicircle distribution, named after the physicist Eugene Wigner, is the probability distribution supported on the interval the graph of whose probability density function f is a semicircle of radius R centered at (0, 0) and then suitably normalized (so that it is really a semi-ellipse):

for −R < x < R, and f(x) = 0 if x > R or x < − R.

This distribution arises as the limiting distribution of eigenvalues of many random symmetric matrices as the size of the matrix approaches infinity.

It is a scaled beta distribution, more precisely, if Y is beta distributed with parameters α = β = 3/2, then X = 2RYR has the above Wigner semicircle distribution.

Read more about Wigner Semicircle Distribution:  General Properties, Relation To Free Probability

Famous quotes containing the word distribution:

    My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.
    Rutherford Birchard Hayes (1822–1893)