Weierstrass Transform - Transforms of Some Important Functions

Transforms of Some Important Functions

As mentioned above, every constant function is its own Weierstrass transform. The Weierstrass transform of any polynomial is a polynomial of the same degree. Indeed, if Hn denotes the (physicist's) Hermite polynomial of degree n, then the Weierstrass transform of Hn(x/2) is simply xn. This can be shown by exploiting the fact that the generating function for the Hermite polynomials is closely related to the Gaussian kernel used in the definition of the Weierstrass transform.

The Weierstrass transform of the function eax (where a is an arbitrary constant) is ea2 eax. The function eax is thus an eigenvector for the Weierstrass transform. (This is in fact more generally true for all convolution transforms.) By using a=bi where i is the imaginary unit, and using Euler's identity, we see that the Weierstrass transform of the function cos(bx) is eb2 cos(bx) and the Weierstrass transform of the function sin(bx) is eb2 sin(bx).

The Weierstrass transform of the function eax2 is if a < 1/4 and undefined if a ≥ 1/4. In particular, by choosing a negative, we see that the Weierstrass transform of a Gaussian function is again a Gaussian function, but a "wider" one.

Read more about this topic:  Weierstrass Transform

Famous quotes containing the words transforms, important and/or functions:

    Now, since our condition accommodates things to itself, and transforms them according to itself, we no longer know things in their reality; for nothing comes to us that is not altered and falsified by our Senses. When the compass, the square, and the rule are untrue, all the calculations drawn from them, all the buildings erected by their measure, are of necessity also defective and out of plumb. The uncertainty of our senses renders uncertain everything that they produce.
    Michel de Montaigne (1533–1592)

    “Which is more important to you, your field or your children?” the department head asked. She replied, “That’s like asking me if I could walk better if you amputated my right leg or my left leg.”
    —Anonymous Parent. As quoted in Women and the Work Family Dilemma, by Deborah J. Swiss and Judith P. Walker, ch. 2 (1993)

    In today’s world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.
    Urie Bronfenbrenner (b. 1917)