Wavelet Transform
In mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. Nowadays, wavelet transformation is one of the most popular candidates of the time-frequency-transformations. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform.
Read more about Wavelet Transform: Formal Definition, Wavelet Transform, Wavelet Compression, Comparison With Wavelet Transformation, Fourier Transformation and Time-frequency Analysis, Other Practical Applications, See Also, References
Famous quotes containing the words wavelet and/or transform:
“These facts have always suggested to man the sublime creed that the world is not the product of manifold power, but of one will, of one mind; and that one mind is everywhere active, in each ray of the star, in each wavelet of the pool; and whatever opposes that will is everywhere balked and baffled, because things are made so, and not otherwise.”
—Ralph Waldo Emerson (18031882)
“But I must needs take my petulance, contrasting it with my accustomed morning hopefulness, as a sign of the ageing of appetite, of a decay in the very capacity of enjoyment. We need some imaginative stimulus, some not impossible ideal which may shape vague hope, and transform it into effective desire, to carry us year after year, without disgust, through the routine- work which is so large a part of life.”
—Walter Pater (18391894)