In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time).
Read more about Discrete Wavelet Transform: Properties, Applications, Comparison With Fourier Transform, Other Transforms, Code Examples
Famous quotes containing the words discrete, wavelet and/or transform:
“The mastery of ones phonemes may be compared to the violinists mastery of fingering. The violin string lends itself to a continuous gradation of tones, but the musician learns the discrete intervals at which to stop the string in order to play the conventional notes. We sound our phonemes like poor violinists, approximating each time to a fancied norm, and we receive our neighbors renderings indulgently, mentally rectifying the more glaring inaccuracies.”
—W.V. Quine (b. 1908)
“These facts have always suggested to man the sublime creed that the world is not the product of manifold power, but of one will, of one mind; and that one mind is everywhere active, in each ray of the star, in each wavelet of the pool; and whatever opposes that will is everywhere balked and baffled, because things are made so, and not otherwise.”
—Ralph Waldo Emerson (18031882)
“He had said that everything possessed
The power to transform itself, or else,
And what meant more, to be transformed.”
—Wallace Stevens (18791955)