Comparison With Fourier Transform
See also: Discrete Fourier transformTo illustrate the differences and similarities between the discrete wavelet transform with the discrete Fourier transform, consider the DWT and DFT of the following sequence: (1,0,0,0), a unit impulse.
The DFT has orthogonal basis (DFT matrix):
1 1 1 1 1 0 –1 0 0 1 0 –1 1 –1 1 –1while the DWT with Haar wavelets for length 4 data has orthogonal basis in the rows of:
1 1 1 1 1 1 –1 –1 1 –1 0 0 0 0 1 –1(To simplify notation, whole numbers are used, so the bases are orthogonal but not orthonormal.)
Preliminary observations include:
- Wavelets have location – the (1,1,–1,–1) wavelet corresponds to “left side” versus “right side”, while the last two wavelets have support on the left side or the right side, and one is a translation of the other.
- Sinusoidal waves do not have location – they spread across the whole space – but do have phase – the second and third waves are translations of each other, corresponding to being 90° out of phase, like cosine and sine, of which these are discrete versions.
Decomposing the sequence with respect to these bases yields:
The DWT demonstrates the localization: the (1,1,1,1) term gives the average signal value, the (1,1,–1,–1) places the signal in the left side of the domain, and the (1,–1,0,0) places it at the left side of the left side, and truncating at any stage yields a downsampled version of the signal:
The DFT, by contrast, expresses the sequence by the interference of waves of various frequencies – thus truncating the series yields a low-pass filtered version of the series:
Notably, the middle approximation (2-term) differs. From the frequency domain perspective, this is a better approximation, but from the time domain perspective it has drawbacks – it exhibits undershoot – one of the values is negative, though the original series is non-negative everywhere – and ringing, where the right side is non-zero, unlike in the wavelet transform. On the other hand, the Fourier approximation correctly shows a peak, and all points are within of their correct value, though all points have error. The wavelet approximation, by contrast, places a peak on the left half, but has no peak at the first point, and while it is exactly correct for half the values (reflecting location), it has an error of for the other values.
This illustrates the kinds of trade-offs between these transforms, and how in some respects the DWT provides preferable behavior, particularly for the modeling of transients.
Read more about this topic: Discrete Wavelet Transform
Famous quotes containing the words comparison with, comparison and/or transform:
“I have travelled a good deal in Concord; and everywhere, in shops, and offices, and fields, the inhabitants have appeared to me to be doing penance in a thousand remarkable ways.... The twelve labors of Hercules were trifling in comparison with those which my neighbors have undertaken; for they were only twelve, and had an end; but I could never see that these men slew or captured any monster or finished any labor.”
—Henry David Thoreau (18171862)
“When we reflect on our past sentiments and affections, our thought is a faithful mirror, and copies its objects truly; but the colours which it employs are faint and dull, in comparison of those in which our original perceptions were clothed.”
—David Hume (17111776)
“He had said that everything possessed
The power to transform itself, or else,
And what meant more, to be transformed.”
—Wallace Stevens (18791955)