Facts
The following statements are equivalent for the ring R:
- R is von Neumann regular
- every principal left ideal is generated by an idempotent
- every finitely generated left ideal is generated by an idempotent
- every principal left ideal is a direct summand of the left R-module R
- every finitely generated left ideal is a direct summand of the left R-module R
- every finitely generated submodule of a projective left R-module P is a direct summand of P
- every left R-module is flat: this is also known as R being absolutely flat, or R having weak dimension 0.
- every short exact sequence of left R-modules is pure exact
The corresponding statements for right modules are also equivalent to R being von Neumann regular.
In a commutative von Neumann regular ring, for each element x there is a unique element y such that xyx=x and yxy=y, so there is a canonical way to choose the "weak inverse" of x. The following statements are equivalent for the commutative ring R:
- R is von Neumann regular
- R has Krull dimension 0 and is reduced
- Every localization of R at a maximal ideal is a field
- R is a subring of a product of fields closed under taking "weak inverses" of x∈R (the unique element y such that xyx=x and yxy=y).
Also, the following are equivalent: for a commutative ring A
- is von Neumann regular.
- The spectrum of R is Hausdorff (with respect to Zariski topology).
- The constructible topology and Zariski topology for coincide.
Every semisimple ring is von Neumann regular, and a left (or right) Noetherian von Neumann regular ring is semisimple. Every von Neumann regular ring has Jacobson radical {0} and is thus semiprimitive (also called "Jacobson semi-simple").
Generalizing the above example, suppose S is some ring and M is an S-module such that every submodule of M is a direct summand of M (such modules M are called semisimple). Then the endomorphism ring EndS(M) is von Neumann regular. In particular, every semisimple ring is von Neumann regular.
Read more about this topic: Von Neumann Regular Ring
Famous quotes containing the word facts:
“Scholars dream of finding small facts pregnant with great progeny.”
—Mason Cooley (b. 1927)
“Now what I want is facts. Teach these boys and girls nothing but facts. Facts alone are wanted in life. Plant nothing else and root out everything else. You can only form the minds of reasoning animals upon Facts: nothing else will ever be of any service to them.”
—Charles Dickens (18121870)
“The men the American people admire most extravagantly are the most daring liars; the men they detest most violently are those who try to tell them the truth. A Galileo could no more be elected President of the United States than he could be elected Pope of Rome. Both posts are reserved for men favored by God with an extraordinary genius for swathing the bitter facts of life in bandages of soft illusion.”
—H.L. (Henry Lewis)