Facts
The following statements are equivalent for the ring R:
- R is von Neumann regular
- every principal left ideal is generated by an idempotent
- every finitely generated left ideal is generated by an idempotent
- every principal left ideal is a direct summand of the left R-module R
- every finitely generated left ideal is a direct summand of the left R-module R
- every finitely generated submodule of a projective left R-module P is a direct summand of P
- every left R-module is flat: this is also known as R being absolutely flat, or R having weak dimension 0.
- every short exact sequence of left R-modules is pure exact
The corresponding statements for right modules are also equivalent to R being von Neumann regular.
In a commutative von Neumann regular ring, for each element x there is a unique element y such that xyx=x and yxy=y, so there is a canonical way to choose the "weak inverse" of x. The following statements are equivalent for the commutative ring R:
- R is von Neumann regular
- R has Krull dimension 0 and is reduced
- Every localization of R at a maximal ideal is a field
- R is a subring of a product of fields closed under taking "weak inverses" of x∈R (the unique element y such that xyx=x and yxy=y).
Also, the following are equivalent: for a commutative ring A
- is von Neumann regular.
- The spectrum of R is Hausdorff (with respect to Zariski topology).
- The constructible topology and Zariski topology for coincide.
Every semisimple ring is von Neumann regular, and a left (or right) Noetherian von Neumann regular ring is semisimple. Every von Neumann regular ring has Jacobson radical {0} and is thus semiprimitive (also called "Jacobson semi-simple").
Generalizing the above example, suppose S is some ring and M is an S-module such that every submodule of M is a direct summand of M (such modules M are called semisimple). Then the endomorphism ring EndS(M) is von Neumann regular. In particular, every semisimple ring is von Neumann regular.
Read more about this topic: Von Neumann Regular Ring
Famous quotes containing the word facts:
“It is not an arbitrary decree of God, but in the nature of man, that a veil shuts down on the facts of to-morrow; for the soul will not have us read any other cipher than that of cause and effect. By this veil, which curtains events, it instructs the children of men to live in to-day.”
—Ralph Waldo Emerson (18031882)
“Let us not underrate the value of a fact; it will one day flower in a truth. It is astonishing how few facts of importance are added in a century to the natural history of any animal. The natural history of man himself is still being gradually written.”
—Henry David Thoreau (18171862)
“The history of his present majesty, is a history of unremitting injuries and usurpations ... all of which have in direct object the establishment of an absolute tyranny over these states. To prove this, let facts be submitted to a candid world, for the truth of which we pledge a faith yet unsullied by falsehood.”
—Thomas Jefferson (17431826)