Vector Field - Flow Curves

Flow Curves

Consider the flow of a fluid through a region of space. At any given time, any point of the fluid has a particular velocity associated with it; thus there is a vector field associated to any flow. The converse is also true: it is possible to associate a flow to a vector field having that vector field as its velocity.

Given a vector field V defined on S, one defines curves γ(t) on S such that for each t in an interval I

By the Picard–Lindelöf theorem, if V is Lipschitz continuous there is a unique C1-curve γx for each point x in S so that

The curves γx are called flow curves of the vector field V and partition S into equivalence classes. It is not always possible to extend the interval (−ε, +ε) to the whole real number line. The flow may for example reach the edge of S in a finite time. In two or three dimensions one can visualize the vector field as giving rise to a flow on S. If we drop a particle into this flow at a point p it will move along the curve γp in the flow depending on the initial point p. If p is a stationary point of V then the particle will remain at p.

Typical applications are streamline in fluid, geodesic flow, and one-parameter subgroups and the exponential map in Lie groups.

Read more about this topic:  Vector Field

Famous quotes containing the words flow and/or curves:

    For as the interposition of a rivulet, however small, will occasion the line of the phalanx to fluctuate, so any trifling disagreement will be the cause of seditions; but they will not so soon flow from anything else as from the disagreement between virtue and vice, and next to that between poverty and riches.
    Aristotle (384–322 B.C.)

    At the end of every diet, the path curves back toward the trough.
    Mason Cooley (b. 1927)