Vector-valued Differential Form - Lie Algebra-valued Forms

An important case of vector-valued differential forms are Lie algebra-valued forms. These are -valued forms where is a Lie algebra. Such forms have important applications in the theory of connections on a principal bundle as well as in the theory of Cartan connections.

Since every Lie algebra has a bilinear Lie bracket operation, the wedge product of two Lie algebra-valued forms can be composed with the bracket operation to obtain another Lie algebra-valued form. This operation is denoted by to indicate both operations involved, or often just . For example, if and are Lie algebra-valued one forms, then one has

With this operation the set of all Lie algebra-valued forms on a manifold M becomes a graded Lie superalgebra.

The operation can also be defined as the bilinear operation on satisfying by the formula

for all and .

The alternative notation, which resembles a commutator, is justified by the fact that if the Lie algebra is a matrix algebra then is nothing but the graded commutator of and, i. e. if and then

where are wedge products formed using the matrix multiplication on .

Read more about this topic:  Vector-valued Differential Form

Famous quotes containing the words lie and/or forms:

    Up, lad: thews that lie and cumber
    Sunlit pallets never thrive;
    Morns abed and daylight slumber
    Were not meant for man alive.
    —A.E. (Alfred Edward)

    All forms of beauty, like all possible phenomena, contain an element of the eternal and an element of the transitory—of the absolute and of the particular. Absolute and eternal beauty does not exist, or rather it is only an abstraction creamed from the general surface of different beauties. The particular element in each manifestation comes from the emotions: and just as we have our own particular emotions, so we have our own beauty.
    Charles Baudelaire (1821–1867)