Van Der Corput Sequence

A van der Corput sequence is a low-discrepancy sequence over the unit interval first published in 1935 by the Dutch mathematician J. G. van der Corput. It is constructed by reversing the base n representation of the sequence of natural numbers (1, 2, 3, …). For example, the decimal van der Corput sequence begins:

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 0.02, 0.12, 0.22, 0.32, …

whereas the binary van der Corput sequence can be written as:

0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, 0.1112, 0.00012, 0.10012, 0.01012, 0.11012, 0.00112, 0.10112, 0.01112, 0.11112, …

or, equivalently, as:

The elements of the van der Corput sequence (in any base) form a dense set in the unit interval: for any real number in there exists a subsequence of the van der Corput sequence that converges towards that number. They are also equidistributed over the unit interval.

Famous quotes containing the words van, der and/or sequence:

    I know that Europe’s wonderful, yet something seems to lack;
    The Past is too much with her, and the people looking back.
    —Henry Van Dyke (1852–1933)

    Under the lindens on the heather,
    There was our double resting-place.
    —Walther Von Der Vogelweide (1170?–1230?)

    We have defined a story as a narrative of events arranged in their time-sequence. A plot is also a narrative of events, the emphasis falling on causality. “The king died and then the queen died” is a story. “The king died, and then the queen died of grief” is a plot. The time sequence is preserved, but the sense of causality overshadows it.
    —E.M. (Edward Morgan)