Universal Set - Set Theories With A Universal Set

Set Theories With A Universal Set

There are set theories known to be consistent (if the usual set theory is consistent) in which the universal set V does exist (and is true). In these theories, Zermelo's axiom of separation does not hold in general, and the axiom of comprehension of naive set theory is restricted in a different way.

The most widely studied set theory with a universal set is Willard Van Orman Quine’s New Foundations. Alonzo Church and Arnold Oberschelp also published work on such set theories. Church speculated that his theory might be extended in a manner consistent with Quine’s, but this is not possible for Oberschelp’s, since in it the singleton function is provably a set, which leads immediately to paradox in New Foundations.

Zermelo–Fraenkel set theory and related set theories, which are based on the idea of the cumulative hierarchy, do not allow for the existence of a universal set.

Read more about this topic:  Universal Set

Famous quotes containing the words set, theories and/or universal:

    All national institutions of churches, whether Jewish, Christian or Turkish, appear to me no other than human inventions, set up to terrify and enslave mankind, and monopolize power and profit.
    Thomas Paine (1737–1809)

    Whatever practical people may say, this world is, after all, absolutely governed by ideas, and very often by the wildest and most hypothetical ideas. It is a matter of the very greatest importance that our theories of things that seem a long way apart from our daily lives, should be as far as possible true, and as far as possible removed from error.
    Thomas Henry Huxley (1825–95)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)