Uniform Convergence - Definition

Definition

Suppose S is a set and fn : SR is a real-valued function for every natural number n. We say that the sequence (fn)nN is uniformly convergent with limit f : SR if for every ε > 0, there exists a natural number N such that for all xS and all nN we have |fn(x) − f(x)| < ε.

Consider the sequence αn = supx |fn(x) − f(x)| where the supremum is taken over all xS. Clearly fn converges to f uniformly if and only if αn tends to 0.

The sequence (fn)nN is said to be locally uniformly convergent with limit f if for every x in some metric space S, there exists an r > 0 such that (fn) converges uniformly on B(x,r) ∩ S.

Read more about this topic:  Uniform Convergence

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)