Uniform Convergence

In the mathematical field of analysis, uniform convergence is a type of convergence stronger than pointwise convergence. A sequence {fn} of functions converges uniformly to a limiting function f if the speed of convergence of fn(x) to f(x) does not depend on x.

The concept is important because several properties of the functions fn, such as continuity and Riemann integrability, are transferred to the limit f if the convergence is uniform.

Uniform convergence to a function on a given interval can be defined in terms of the uniform norm.

Read more about Uniform Convergence:  History, Definition, Examples, Properties, Almost Uniform Convergence

Famous quotes containing the word uniform:

    When a uniform exercise of kindness to prisoners on our part has been returned by as uniform severity on the part of our enemies, you must excuse me for saying it is high time, by other lessons, to teach respect to the dictates of humanity; in such a case, retaliation becomes an act of benevolence.
    Thomas Jefferson (1743–1826)