Uniform Continuity - Local Continuity Versus Global Uniform Continuity

Local Continuity Versus Global Uniform Continuity

Continuity itself is a local (more precisely, pointwise) property of a function—that is, a function f is continuous, or not, at a particular point. When we speak of a function being continuous on an interval, we mean only that it is continuous at each point of the interval. In contrast, uniform continuity is a global property of f, in the sense that the standard definition refers to pairs of points rather than individual points. On the other hand, it is possible to give a local definition in terms of the natural extension f*, see below.

The mathematical statements that a function is continuous on an interval I and the definition that a function is uniformly continuous on the same interval are structurally very similar. Continuity of a function for every point x of an interval can thus be expressed by a formula starting with the quantification

which is equivalent to

whereas for uniform continuity, the order of the second and third quantifiers is reversed:

(the domains of the variables have been deliberately left out so as to emphasize quantifier order). Thus for continuity at each point, one takes an arbitrary point x, and then there must exist a distance δ,

while for uniform continuity a single δ must work uniformly for all points x (and y):

Read more about this topic:  Uniform Continuity

Famous quotes containing the words local, continuity, global and/or uniform:

    In everyone’s youthful dreams, philosophy is still vaguely but inseparably, and with singular truth, associated with the East, nor do after years discover its local habitation in the Western world. In comparison with the philosophers of the East, we may say that modern Europe has yet given birth to none.
    Henry David Thoreau (1817–1862)

    Every generation rewrites the past. In easy times history is more or less of an ornamental art, but in times of danger we are driven to the written record by a pressing need to find answers to the riddles of today.... In times of change and danger when there is a quicksand of fear under men’s reasoning, a sense of continuity with generations gone before can stretch like a lifeline across the scary present and get us past that idiot delusion of the exceptional Now that blocks good thinking.
    John Dos Passos (1896–1970)

    Ours is a brand—new world of allatonceness. “Time” has ceased, “space” has vanished. We now live in a global village ... a simultaneous happening.
    Marshall McLuhan (1911–1980)

    The sugar maple is remarkable for its clean ankle. The groves of these trees looked like vast forest sheds, their branches stopping short at a uniform height, four or five feet from the ground, like eaves, as if they had been trimmed by art, so that you could look under and through the whole grove with its leafy canopy, as under a tent whose curtain is raised.
    Henry David Thoreau (1817–1862)