Uniform Continuity - Definition For Functions On Metric Spaces

Definition For Functions On Metric Spaces

Given metric spaces (X, d1) and (Y, d2), a function f : XY is called uniformly continuous if for every real number ε > 0 there exists δ > 0 such that for every x, yX with d1(x, y) < δ, we have that d2(f(x), f(y)) < ε.

If X and Y are subsets of the real numbers, d1 and d2 can be the standard Euclidean norm, || · ||, yielding the definition: for all ε > 0 there exists a δ > 0 such that for all x, yX, |xy| < δ implies |f(x) − f(y)| < ε.

The difference between being uniformly continuous, and simply being continuous at every point, is that in uniform continuity the value of δ depends only on ε and not on the point in the domain.

Read more about this topic:  Uniform Continuity

Famous quotes containing the words definition, functions and/or spaces:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.
    Charles Baudelaire (1821–1867)

    Le silence éternel de ces espaces infinis m’effraie. The eternal silence of these infinite spaces frightens me.
    Blaise Pascal (1623–1662)