Uniform Continuity - Definition For Functions On Metric Spaces

Definition For Functions On Metric Spaces

Given metric spaces (X, d1) and (Y, d2), a function f : XY is called uniformly continuous if for every real number ε > 0 there exists δ > 0 such that for every x, yX with d1(x, y) < δ, we have that d2(f(x), f(y)) < ε.

If X and Y are subsets of the real numbers, d1 and d2 can be the standard Euclidean norm, || · ||, yielding the definition: for all ε > 0 there exists a δ > 0 such that for all x, yX, |xy| < δ implies |f(x) − f(y)| < ε.

The difference between being uniformly continuous, and simply being continuous at every point, is that in uniform continuity the value of δ depends only on ε and not on the point in the domain.

Read more about this topic:  Uniform Continuity

Famous quotes containing the words definition, functions and/or spaces:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others’ reasons for action, or the basis of others’ emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.
    Terri Apter (20th century)

    Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,—these are some of our astronomers.
    Henry David Thoreau (1817–1862)