Uniform Boundedness Principle

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

The theorem was first published in 1927 by Stefan Banach and Hugo Steinhaus but it was also proven independently by Hans Hahn.

Read more about Uniform Boundedness Principle:  Uniform Boundedness Principle, Generalizations

Famous quotes containing the words uniform and/or principle:

    The Federal Constitution has stood the test of more than a hundred years in supplying the powers that have been needed to make the Central Government as strong as it ought to be, and with this movement toward uniform legislation and agreements between the States I do not see why the Constitution may not serve our people always.
    William Howard Taft (1857–1930)

    From the age of fifteen, dogma has been the fundamental principle of my religion: I know no other religion; I cannot enter into the idea of any other sort of religion; religion, as a mere sentiment, is to me a dream and a mockery.
    Cardinal John Henry Newman (1801–1890)