Uniform Boundedness Principle

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

The theorem was first published in 1927 by Stefan Banach and Hugo Steinhaus but it was also proven independently by Hans Hahn.

Read more about Uniform Boundedness Principle:  Uniform Boundedness Principle, Generalizations

Famous quotes containing the words uniform and/or principle:

    Truly man is a marvelously vain, diverse, and undulating object. It is hard to found any constant and uniform judgment on him.
    Michel de Montaigne (1533–1592)

    Why does philosophy use concepts and why does faith use symbols if both try to express the same ultimate? The answer, of course, is that the relation to the ultimate is not the same in each case. The philosophical relation is in principle a detached description of the basic structure in which the ultimate manifests itself. The relation of faith is in principle an involved expression of concern about the meaning of the ultimate for the faithful.
    Paul Tillich (1886–1965)