The Undecidable Problem in Computability Theory
In computability theory, the halting problem is a decision problem which can be stated as follows:
- Given the description of an arbitrary program and a finite input, decide whether the program finishes running or will run forever.
Alan Turing proved in 1936 that a general algorithm running on a Turing machine that solves the halting problem for all possible program-input pairs necessarily cannot exist. Hence, the halting problem is undecidable for Turing machines.
Read more about this topic: Undecidable Problem
Famous quotes containing the words problem and/or theory:
“The problem is simply this: no one can feel like CEO of his or her life in the presence of the people who toilet trained her and spanked him when he was naughty. We may have become Masters of the Universe, accustomed to giving life and taking it away, casually ordering people into battle or out of their jobs . . . and yet we may still dirty our diapers at the sound of our mommys whimper or our daddys growl.”
—Frank Pittman (20th century)
“It is not enough for theory to describe and analyse, it must itself be an event in the universe it describes. In order to do this theory must partake of and become the acceleration of this logic. It must tear itself from all referents and take pride only in the future. Theory must operate on time at the cost of a deliberate distortion of present reality.”
—Jean Baudrillard (b. 1929)