Uncountable Set - Without The Axiom of Choice

Without The Axiom of Choice

Without the axiom of choice, there might exist cardinalities incomparable to (namely, the cardinalities of Dedekind-finite infinite sets). Sets of these cardinalities satisfy the first three characterizations above but not the fourth characterization. Because these sets are not larger than the natural numbers in the sense of cardinality, some may not want to call them uncountable.

If the axiom of choice holds, the following conditions on a cardinal are equivalent:

  • and
  • , where and is least initial ordinal greater than

However, these may all be different if the axiom of choice fails. So it is not obvious which one is the appropriate generalization of "uncountability" when the axiom fails. It may be best to avoid using the word in this case and specify which of these one means.

Read more about this topic:  Uncountable Set

Famous quotes containing the words axiom and/or choice:

    “You are bothered, I suppose, by the idea that you can’t possibly believe in miracles and mysteries, and therefore can’t make a good wife for Hazard. You might just as well make yourself unhappy by doubting whether you would make a good wife to me because you can’t believe the first axiom in Euclid. There is no science which does not begin by requiring you to believe the incredible.”
    Henry Brooks Adams (1838–1918)

    If we pretend to respect the artist at all, we must allow him his freedom of choice, in the face, in particular cases, of innumerable presumptions that the choice will not fructify. Art derives a considerable part of its beneficial exercise from flying in the face of presumptions.
    Henry James (1843–1916)