Theta Function - Auxiliary Functions

Auxiliary Functions

The Jacobi theta function defined above is sometimes considered along with three auxiliary theta functions, in which case it is written with a double 0 subscript:

The auxiliary (or half-period) functions are defined by


\begin{align}
\vartheta_{01}(z;\tau)& = \vartheta\!\left(z+{\textstyle\frac{1}{2}};\tau\right)\\
\vartheta_{10}(z;\tau)& = \exp\!\left({\textstyle\frac{1}{4}}\pi i \tau + \pi i z\right)
\vartheta\!\left(z + {\textstyle\frac{1}{2}}\tau;\tau\right)\\
\vartheta_{11}(z;\tau)& = \exp\!\left({\textstyle\frac{1}{4}}\pi i \tau + \pi i\!\left(z+{\textstyle
\frac{1}{2}}\right)\right)\vartheta\!\left(z+{\textstyle\frac{1}{2}}\tau + {\textstyle\frac{1}{2}};\tau\right).
\end{align}

This notation follows Riemann and Mumford; Jacobi's original formulation was in terms of the nome q = exp(πiτ) rather than τ. In Jacobi's notation the θ-functions are written like this:


\begin{align}
\theta_1(z;q) &= -\vartheta_{11}(z;\tau)\\
\theta_2(z;q) &= \vartheta_{10}(z;\tau)\\
\theta_3(z;q) &= \vartheta_{00}(z;\tau)\\
\theta_4(z;q) &= \vartheta_{01}(z;\tau)
\end{align}

The above definitions of the Jacobi theta functions are by no means unique. See Jacobi theta functions - notational variations for further discussion.

If we set z = 0 in the above theta functions, we obtain four functions of τ only, defined on the upper half-plane (sometimes called theta constants.) These can be used to define a variety of modular forms, and to parametrize certain curves; in particular, the Jacobi identity is


\vartheta_{00}(0;\tau)^4 = \vartheta_{01}(0;\tau)^4 + \vartheta_{10}(0;\tau)^4

which is the Fermat curve of degree four.

Read more about this topic:  Theta Function

Famous quotes containing the word functions:

    Those things which now most engage the attention of men, as politics and the daily routine, are, it is true, vital functions of human society, but should be unconsciously performed, like the corresponding functions of the physical body.
    Henry David Thoreau (1817–1862)