Thermal Energy - Distinction of Thermal Energy and Heat

Distinction of Thermal Energy and Heat

In thermodynamics, heat must always be defined as energy in exchange between two systems, or a single system and its surroundings. According to the zeroth law of thermodynamics, heat is exchanged between thermodynamic systems in thermal contact only if their temperatures are different, as this is the condition when the net exchange of thermal energy is non-zero. For the purpose of distinction, a system is defined to be enclosed by a well-characterized boundary. If heat traverses the boundary in direction into the system, the internal energy change is considered to be a positive quantity, while exiting the system, it is negative. As a process variable, heat is never a property of the system, nor is it contained within the boundary of the system.

In contrast to heat, thermal energy exists on both sides of a boundary. It is the statistical mean of the microscopic fluctuations of the kinetic energy of the systems' particles, and it is the source and the effect of the transfer of heat across a system boundary. Statistically, thermal energy is always exchanged between systems, even when the temperatures on both sides is the same, i.e. the systems are in thermal equilibrium. However, at equilibrium, the net exchange of thermal energy is zero, and therefore there is no heat.

Thermal energy may be increased in a system by other means than heat, for example when mechanical or electrical work is performed on the system. No qualitative difference exists between the thermal energy added by other means. Thermal energy is a state function. There is also no need in classical thermodynamics to characterize the thermal energy in terms of atomic or molecular behavior. A change in thermal energy induced in a system is the product of the change in entropy and the temperature of the system.

Heat exchanged across a boundary may cause changes other than a change in thermal energy. For example, it may cause phase transitions, such as melting or evaporation, which are changes in the configuration of a material. Since such an energy exchange is not observable by a change in temperature, it is called a latent heat and represents a change in the potential energy of the system.

Rather than being itself the thermal energy involved in a transfer, heat is sometimes also understood as the process of that transfer, i.e. heat functions as a verb.

Today's narrow definition of heat in physics contrasts with its use in common language, in some engineering disciplines, and in the historical scientific development of thermodynamics in the caloric theory of heat. The phenomenon of heat in these instances is today properly identified as the entropy.

Read more about this topic:  Thermal Energy

Famous quotes containing the words distinction of, distinction, energy and/or heat:

    Nature has not placed us in an inferior rank to men, no more than the females of other animals, where we see no distinction of capacity, though I am persuaded if there was a commonwealth of rational horses ... it would be an established maxim amongst them that a mare could not be taught to pace.
    Mary Wortley, Lady Montagu (1689–1762)

    There is nothing more likely to drive a man mad, than the being unable to get rid of the idea of the distinction between right and wrong, and an obstinate, constitutional preference of the true to the agreeable.
    William Hazlitt (1778–1830)

    While the State becomes inflated and hypertrophied in order to obtain a firm enough grip upon individuals, but without succeeding, the latter, without mutual relationships, tumble over one another like so many liquid molecules, encountering no central energy to retain, fix and organize them.
    Emile Durkheim (1858–1917)

    Beware thoughts that come in the night. They aren’t turned properly; they come in askew, free of sense and restriction, deriving from the most remote of sources.
    —William Least Heat Moon [William Trogdon] (b. 1939)