In physics and chemistry, heat is energy transferred from one body to another by thermal interactions. The transfer of energy can occur in a variety of ways, among them conduction, radiation, and convection. Heat is not a property of a system or body, but instead is always associated with a process of some kind, and is synonymous with heat flow and heat transfer.

Heat flow from high to low temperature occurs spontaneously, and is always accompanied by an increase in entropy. This flow of energy can be harnessed and partly converted into useful work by means of a heat engine. The second law of thermodynamics prohibits heat flow directly from low to high temperature, but with the aid of a heat pump external work can be used to transport internal energy indirectly from a low to a high temperature body.

Heat is a characteristic of macroscopic processes and is described by thermodynamics, but its origin and properties can be understood in terms of microscopic constituents using statistical mechanics. For instance, heat flow can occur when the rapidly vibrating molecules in a high temperature body transfer some of their energy (by direct contact, radiation exchange, or other mechanisms) to the more slowly vibrating molecules in a lower temperature body.

The SI unit of heat is the joule. Heat can be measured by calorimetry, or determined indirectly by calculations based on other quantities, relying for instance on the first law of thermodynamics. In physics, especially in calorimetry, and in meteorology, the concepts of latent heat and of sensible heat are used. Latent heat produces changes of state without temperature change, while sensible heat produces temperature change.

Read more about Heat:  Overview, Microscopic Origin of Heat, History, Notation and Units, Estimation of Quantity of Heat, Internal Energy and Enthalpy, Latent and Sensible Heat, Specific Heat, Entropy, Heat Transfer in Engineering, Practical Applications, Usage of Words

Famous quotes containing the word heat:

    Genius is present in every age, but the men carrying it within them remain benumbed unless extraordinary events occur to heat up and melt the mass so that it flows forth.
    Denis Diderot (1713–1784)

    For, ere Demetrius looked on Hermia’s eyne,
    He hailed down oaths that he was only mine,
    And when this hail some heat from Hermia felt,
    So he dissolved, and showers of oaths did melt.
    William Shakespeare (1564–1616)

    For God was as large as a sunlamp and laughed his heat at us and therefore we did not cringe at the death hole.
    Anne Sexton (1928–1974)