Relation With Scientific Theories
Theorems in mathematics and theories in science are fundamentally different in their epistemology. A scientific theory cannot be proven; its key attribute is that it is falsifiable, that is, it makes predictions about the natural world that are testable by experiments. Any disagreement between prediction and experiment demonstrates the incorrectness of the scientific theory, or at least limits its accuracy or domain of validity. Mathematical theorems, on the other hand, are purely abstract formal statements: the proof of a theorem cannot involve experiments or other empirical evidence in the same way such evidence is used to support scientific theories.
Nonetheless, there is some degree of empiricism and data collection involved in the discovery of mathematical theorems. By establishing a pattern, sometimes with the use of a powerful computer, mathematicians may have an idea of what to prove, and in some cases even a plan for how to set about doing the proof. For example, the Collatz conjecture has been verified for start values up to about 2.88 × 1018. The Riemann hypothesis has been verified for the first 10 trillion zeroes of the zeta function. Neither of these statements is considered to be proven.
Such evidence does not constitute proof. For example, the Mertens conjecture is a statement about natural numbers that is now known to be false, but no explicit counterexample (i.e., a natural number n for which the Mertens function M(n) equals or exceeds the square root of n) is known: all numbers less than 1014 have the Mertens property, and the smallest number which does not have this property is only known to be less than the exponential of 1.59 × 1040, which is approximately 10 to the power 4.3 × 1039. Since the number of particles in the universe is generally considered to be less than 10 to the power 100 (a googol), there is no hope to find an explicit counterexample by exhaustive search.
Note that the word "theory" also exists in mathematics, to denote a body of mathematical axioms, definitions and theorems, as in, for example, group theory. There are also "theorems" in science, particularly physics, and in engineering, but they often have statements and proofs in which physical assumptions and intuition play an important role; the physical axioms on which such "theorems" are based are themselves falsifiable.
Read more about this topic: Theorem
Famous quotes containing the words relation, scientific and/or theories:
“To be a good enough parent one must be able to feel secure in ones parenthood, and ones relation to ones child...The security of the parent about being a parent will eventually become the source of the childs feeling secure about himself.”
—Bruno Bettelheim (20th century)
“I philosophize from the vantage point only of our own
provincial conceptual scheme and scientific epoch, true; but I know no better.”
—Willard Van Orman Quine (b. 1908)
“Whatever practical people may say, this world is, after all, absolutely governed by ideas, and very often by the wildest and most hypothetical ideas. It is a matter of the very greatest importance that our theories of things that seem a long way apart from our daily lives, should be as far as possible true, and as far as possible removed from error.”
—Thomas Henry Huxley (182595)