Tendon - Structure

Structure

Histologically, tendons consist of dense regular connective tissue fascicles encased in dense irregular connective tissue sheaths. Normal healthy tendons are composed mostly of parallel arrays of collagen fibers closely packed together. The dry mass of normal tendons, which makes up about 30% of the total mass with water, is composed of about 86% collagen, 2% elastin, 1–5% proteoglycans, and 0.2% inorganic components such as copper, manganese, and calcium. The collagen portion is made up of 97–98% type I collagen, with small amounts of other types of collagen. These include type II collagen in the cartilaginous zones, type III collagen in the reticulin fibres of the vascular walls, type IX collagen, type IV collagen in the basement membranes of the capillaries, type V collagen in the vascular walls, and type X collagen in the mineralized fibrocartilage near the interface with the bone. Collagen fibres coalesce into macroaggregates. After secretion from the cell, the terminal peptides are cleaved by procollagen N- and C-proteinases, and the tropocollagen molecules spontaneously assemble into insoluble fibrils. A collagen molecule is about 300 nm long and 1–2 nm wide, and the diameter of the fibrils that are formed can range from 50–500 nm. In tendons, the fibrils then assemble further to form fascicles, which are about 10 mm in length with a diameter of 50–300 μm, and finally into a tendon fibre with a diameter of 100–500 μm. Groups of fascicles are bounded by the epitendon and peritendon to form the tendon organ.

The collagen in tendons are held together with proteoglycan components, including decorin and, in compressed regions of tendon, aggrecan, which are capable of binding to the collagen fibrils at specific locations. The proteoglycans are interwoven with the collagen fibrils—their glycosaminoglycan (GAG) side chains have multiple interactions with the surface of the fibrils—showing that the proteoglycans are important structurally in the interconnection of the fibrils. The major GAG components of the tendon are dermatan sulfate and chondroitin sulfate, which associate with collagen and are involved in the fibril assembly process during tendon development. Dermatan sulfate is thought to be responsible for forming associations between fibrils, while chondroitin sulfate is thought to be more involved with occupying volume between the fibrils to keep them separated and help withstand deformation. The dermatan sulfate side chains of decorin aggregate in solution, and this behavior can assist with the assembly of the collagen fibrils. When decorin molecules are bound to a collagen fibril, their dermatan sulfate chains may extend and associate with other dermatan sulfate chains on decorin that is bound to separate fibrils, therefore creating interfibrillar bridges and eventually causing parallel alignment of the fibrils.

The tenocytes produce the collagen molecules, which aggregate end-to-end and side-to-side to produce collagen fibrils. Fibril bundles are organized to form fibres with the elongated tenocytes closely packed between them. There is a three-dimensional network of cell processes associated with collagen in the tendon. The cells communicate with each other through gap junctions, and this signalling gives them the ability to detect and respond to mechanical loading.

Blood vessels may be visualized within the endotendon running parallel to collagen fibres, with occasional branching transverse anastomoses.

The internal tendon bulk is thought to contain no nerve fibres, but the epi- and peritendon contain nerve endings, while Golgi tendon organs are present at the junction between tendon and muscle.

Tendon length varies in all major groups and from person to person. Tendon length is practically the discerning factor where muscle size and potential muscle size is concerned. For example, should all other relevant biological factors be equal, a man with a shorter tendons and a longer biceps muscle will have greater potential for muscle mass than a man with a longer tendon and a shorter muscle. Successful bodybuilders will generally have shorter tendons. Conversely, in sports requiring athletes to excel in actions such as running or jumping, it is beneficial to have longer than average Achilles tendon and a shorter calf muscle.

Tendon length is determined by genetic predisposition, and has not been shown to either increase or decrease in response to environment, unlike muscles, which can be shortened by trauma, use imbalances and a lack of recovery and stretching.

Read more about this topic:  Tendon

Famous quotes containing the word structure:

    Agnosticism is a perfectly respectable and tenable philosophical position; it is not dogmatic and makes no pronouncements about the ultimate truths of the universe. It remains open to evidence and persuasion; lacking faith, it nevertheless does not deride faith. Atheism, on the other hand, is as unyielding and dogmatic about religious belief as true believers are about heathens. It tries to use reason to demolish a structure that is not built upon reason.
    Sydney J. Harris (1917–1986)

    When a house is tottering to its fall,
    The strain lies heaviest on the weakest part,
    One tiny crack throughout the structure spreads,
    And its own weight soon brings it toppling down.
    Ovid (Publius Ovidius Naso)

    A special feature of the structure of our book is the monstrous but perfectly organic part that eavesdropping plays in it.
    Vladimir Nabokov (1899–1977)