Proof
Let y be a function given by the sum of two functions u and v, such that:
Now let y, u and v be increased by small increases Δy, Δu and Δv respectively. Hence:
So:
Now divide throughout by Δx:
Let Δx tend to 0:
Now recall that y = u + v, giving the sum rule in differentiation:
The rule can be extended to subtraction, as follows:
Now use the special case of the constant factor rule in differentiation with k=−1 to obtain:
Therefore, the sum rule can be extended so it "accepts" addition and subtraction as follows:
The sum rule in differentiation can be used as part of the derivation for both the sum rule in integration and linearity of differentiation.
Read more about this topic: Sum Rule In Differentiation
Famous quotes containing the word proof:
“When children feel good about themselves, its like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.”
—Stephanie Martson (20th century)
“War is a beastly business, it is true, but one proof we are human is our ability to learn, even from it, how better to exist.”
—M.F.K. Fisher (19081992)
“The moment a man begins to talk about technique thats proof that he is fresh out of ideas.”
—Raymond Chandler (18881959)