Formal Definition
A statistical model is a collection of probability distribution functions or probability density functions (collectively referred to as distributions for brevity). A parametric model is a collection of distributions, each of which is indexed by a unique finite-dimensional parameter:, where is a parameter and is the feasible region of parameters, which is a subset of d-dimensional Euclidean space. A statistical model may be used to describe the set of distributions from which one assumes that a particular data set is sampled. For example, if one assumes that data arise from a univariate Gaussian distribution, then one has assumed a Gaussian model: .
A non-parametric model is a set of probability distributions with infinite dimensional parameters, and might be written as . A semi-parametric model also has infinite dimensional parameters, but is not dense in the space of distributions. For example, a mixture of Gaussians with one Gaussian at each data point is dense in the space of distributions. Formally, if d is the dimension of the parameter, and n is the number of samples, if as and as, then the model is semi-parametric.
Read more about this topic: Statistical Models
Famous quotes containing the words formal and/or definition:
“That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prizedall these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.”
—Fred Rogers (20th century)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)