Standard Electrode Potential

In electrochemistry, the standard electrode potential, abbreviated E° or E (with a superscript plimsoll character, pronounced "standard" or "nought"), is the measure of individual potential of a reversible electrode at standard state, which is with solutes at an effective concentration of 1 mol dm−3, and gases at a pressure of 1 atm. The reduction potential is an intensive property. The values are most often tabulated at 25 °C. The basis for an electrochemical cell such as the galvanic cell is always a redox reaction which can be broken down into two half-reactions: oxidation at anode (loss of electron) and reduction at cathode (gain of electron). Electricity is generated due to electric potential difference between two electrodes. This potential difference is created as a result of the difference between individual potentials of the two metal electrodes with respect to the electrolyte.

Although the overall potential of a cell can be measured, there is no simple way to accurately measure the electrode/electrolyte potentials in isolation. The electric potential also varies with temperature, concentration and pressure. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.

Read more about Standard Electrode Potential:  Calculation of Standard Electrode Potentials, Standard Reduction Potential Table

Famous quotes containing the words standard and/or potential:

    An indirect quotation we can usually expect to rate only as better or worse, more or less faithful, and we cannot even hope for a strict standard of more and less; what is involved is evaluation, relative to special purposes, of an essentially dramatic act.
    Willard Van Orman Quine (b. 1908)

    A child is born with the potential ability to learn Chinese or Swahili, play a kazoo, climb a tree, make a strudel or a birdhouse, take pleasure in finding the coordinates of a star. Genetic inheritance determines a child’s abilities and weaknesses. But those who raise a child call forth from that matrix the traits and talents they consider important.
    Emilie Buchwald (20th century)