# Spinor

## Spinor

In mathematics and physics, in particular in the theory of the orthogonal groups (such as the rotation or the Lorentz groups), spinors are elements of a complex vector space introduced to expand the notion of spatial vector. Unlike tensors, the space of spinors cannot be built up in a unique and natural way from spatial vectors. However, spinors transform well under the infinitesimal orthogonal transformations (like infinitesimal rotations or infinitesimal Lorentz transformations). Under the full orthogonal group, however, they do not quite transform well, but only "up to a sign". This means that a 360 degree rotation transforms a spinor into its negative, and so it takes a rotation of 720 degrees for a spinor to be transformed into itself. Specifically, spinors are objects associated to a vector space with a quadratic form (like Euclidean space with the standard metric or Minkowski space with the Lorentz metric), and are realized as elements of representation spaces of Clifford algebras. For a given quadratic form, several different spaces of spinors with extra properties may exist.