Spherical Multipole Moments - General Spherical Multipole Moments

General Spherical Multipole Moments

It is straightforward to generalize these formulae by replacing the point charge with an infinitesimal charge element and integrating. The functional form of the expansion is the same


\Phi(\mathbf{r}) =
\frac{1}{4\pi\varepsilon}
\sum_{l=0}^{\infty} \sum_{m=-l}^{l}
\left( \frac{Q_{lm}}{r^{l+1}} \right)
\sqrt{\frac{4\pi}{2l+1}} Y_{lm}(\theta, \phi)

where the general multipole moments are defined


Q_{lm} \ \stackrel{\mathrm{def}}{=}\
\int d\mathbf{r}^{\prime} \rho(\mathbf{r}^{\prime})
\left( r^{\prime} \right)^{l}
\sqrt{\frac{4\pi}{2l+1}}
Y_{lm}^{*}(\theta^{\prime}, \phi^{\prime})

Read more about this topic:  Spherical Multipole Moments

Famous quotes containing the words general and/or moments:

    However energetically society in general may strive to make all the citizens equal and alike, the personal pride of each individual will always make him try to escape from the common level, and he will form some inequality somewhere to his own profit.
    Alexis de Tocqueville (1805–1859)

    Athletes have studied how to leap and how to survive the leap some of the time and return to the ground. They don’t always do it well. But they are our philosophers of actual moments and the body and soul in them, and of our manoeuvres in our emergencies and longings.
    Harold Brodkey (b. 1930)