Solid Angles in Arbitrary Dimensions
The solid angle subtended by the full surface of the unit n-sphere (in the geometer's sense) can be defined in any number of dimensions . One often needs this solid angle factor in calculations with spherical symmetry. It is given by the formula
where is the Gamma function. When is an integer, the Gamma function can be computed explicitly. It follows that
This gives the expected results of 2π rad for the 2D circumference and 4π sr for the 3D sphere. It also throws the slightly less obvious 2 for the 1D case, in which the origin-centered unit "sphere" is the set, which indeed has a measure of 2.
Read more about this topic: Solid Angle
Famous quotes containing the words solid, arbitrary and/or dimensions:
“I stand in awe of my body, this matter to which I am bound has become so strange to me. I fear not spirits, ghosts, of which I am one,that my body might,but I fear bodies, I tremble to meet them. What is this Titan that has possession of me? Talk of mysteries! Think of our life in nature,daily to be shown matter, to come in contact with it,rocks, trees, wind on our cheeks! the solid earth! the actual world! the common sense! Contact! Contact! Who are we? where are we?”
—Henry David Thoreau (18171862)
“... no one who has not been an integral part of a slaveholding community, can have any idea of its abominations.... even were slavery no curse to its victims, the exercise of arbitrary power works such fearful ruin upon the hearts of slaveholders, that I should feel impelled to labor and pray for its overthrow with my last energies and latest breath.”
—Angelina Grimké (18051879)
“It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?or animals?even forests or oceans or rocks?in this world of ours or, even, in worlds or dimensions elsewhere.”
—Doris Lessing (b. 1919)