Computational Problems
In computational geometry, several important computational tasks involve inputs in the form of a simple polygon; in each of these problems, the distinction between the interior and exterior is crucial in the problem definition.
- Point in polygon testing involves determining, for a simple polygon P and a query point q, whether q lies interior to P.
- Simple formulae are known for computing polygon area; that is, the area of the interior of the polygon.
- Polygon triangulation: dividing a simple polygon into triangles. Although convex polygons are easy to triangulate, triangulating a general simple polygon is more difficult because we have to avoid adding edges that cross outside the polygon. Nevertheless, Bernard Chazelle showed in 1991 that any simple polygon with n vertices can be triangulated in Θ(n) time, which is optimal. The same algorithm may also be used for determining whether a closed polygonal chain forms a simple polygon.
- Polygon union: finding the simple polygon or polygons containing the area inside either of two simple polygons
- Polygon intersection: finding the simple polygon or polygons containing the area inside both of two simple polygons
- The convex hull of a simple polygon may be computed more efficiently than the complex hull of other types of inputs, such as the convex hull of a point set.
- Voronoi diagram of a simple polygon
- Medial axis/topological skeleton/straight skeleton of a simple polygon
- Offset curve of a simple polygon
- Polygon resizing
- Minkowski sum for simple polygons
Read more about this topic: Simple Polygon
Famous quotes containing the word problems:
“Its so easy during those first few months to think that the problems will never end. You feel as if your son will never sleep through the night, will always spit up food after eating, and will never learn to smileeven though you dont know any adults or even older children who still act this way.”
—Lawrence Kutner (20th century)
Related Phrases
Related Words