In geometry a simple polygon ( /ˈpɒlɪɡɒn/) is defined as a flat shape consisting of straight, non-intersecting line segments or "sides" that are joined pair-wise to form a closed path. If the sides intersect then the polygon is not simple. The qualifier "simple" is frequently omitted, with the above definition then being understood to define a polygon in general.
The definition given above ensures the following properties:
- A polygon encloses a region (called its interior) which always has a measurable area.
- The line segments that make-up a polygon (called sides or edges) meet only at their endpoints, called vertices (singular: vertex) or less formally "corners".
- Exactly two edges meet at each vertex.
- The number of edges always equals the number of vertices.
Two edges meeting at a corner are usually required to form an angle that is not straight (180°); otherwise, the collinear line segments will be considered parts of a single side.
Mathematicians typically use "polygon" to refer only to the shape made up by the line segments, not the enclosed region, however some may use "polygon" to refer to a plane figure that is bounded by a closed path, composed of a finite sequence of straight line segments (i.e., by a closed polygonal chain). According to the definition in use, this boundary may or may not form part of the polygon itself.
Simple polygons are also called Jordan polygons, because the Jordan curve theorem can be used to prove that such a polygon divides the plane into two regions, the region inside it and the region outside it. A simple polygon in the plane is topologically equivalent to a circle and its interior is topologically equivalent to a disk.
Read more about Simple Polygon: Weakly Simple Polygon, Computational Problems
Famous quotes containing the word simple:
“The prostitute is the scapegoat for everyones sins, and few people care whether she is justly treated or not. Good people have spent thousands of pounds in efforts to reform her, poets have written about her, essayists and orators have made her the subject of some of their most striking rhetoric; perhaps no class of people has been so much abused, and alternatively sentimentalized over as prostitutes have been but one thing they have never yet had, and that is simple legal justice.”
—Alison Neilans. Justice for the ProstituteLady Astors Bill, Equal Rights (September 19, 1925)