Sampling Distribution - Statistical Inference

Statistical Inference

In the theory of statistical inference, the idea of a sufficient statistic provides the basis of choosing a statistic (as a function of the sample data points) in such a way that no information is lost by replacing the full probabilistic description of the sample with the sampling distribution of the selected statistic.

In frequentist inference, for example in the development of a statistical hypothesis test or a confidence interval, the availability of the sampling distribution of a statistic (or an approximation to this in the form of an asymptotic distribution) can allow the ready formulation of such procedures, whereas the development of procedures starting from the joint distribution of the sample would be less straightforward.

In Bayesian inference, when the sampling distribution of a statistic is available, one can consider replacing the final outcome of such procedures, specifically the conditional distributions of any unknown quantities given the sample data, by the conditional distributions of any unknown quantities given selected sample statistics. Such a procedure would involve the sampling distribution of the statistics. The results would be identical provided the statistics chosen are jointly sufficient statistics.

Read more about this topic:  Sampling Distribution

Famous quotes containing the word inference:

    I have heard that whoever loves is in no condition old. I have heard that whenever the name of man is spoken, the doctrine of immortality is announced; it cleaves to his constitution. The mode of it baffles our wit, and no whisper comes to us from the other side. But the inference from the working of intellect, hiving knowledge, hiving skill,—at the end of life just ready to be born,—affirms the inspirations of affection and of the moral sentiment.
    Ralph Waldo Emerson (1803–1882)