The **sampling distribution** of a statistic is the distribution of that statistic, considered as a random variable, when derived from a random sample of size *n*. It may be considered as the distribution of the statistic for *all possible samples from the same population* of a given size. The sampling distribution depends on the underlying distribution of the population, the statistic being considered, the sampling procedure employed and the sample size used. There is often considerable interest in whether the sampling distribution can be approximated by an asymptotic distribution, which corresponds to the limiting case as *n → ∞*.

For example, consider a normal population with mean *μ* and variance *σ*². Assume we repeatedly take samples of a given size from this population and calculate the arithmetic mean for each sample — this statistic is called the sample mean. Each sample has its own average value, and the distribution of these averages is called the "sampling distribution of the sample mean". This distribution is normal since the underlying population is normal, although sampling distributions may also often be close to normal even when the population distribution is not (see central limit theorem). An alternative to the sample mean is the sample median. When calculated from the same population, it has a different sampling distribution to that of the mean and is generally not normal (but it may be close for large sample sizes).

The mean of a sample from a population having a normal distribution is an example of a simple statistic taken from one of the simplest statistical populations. For other statistics and other populations the formulas are more complicated, and often they don't exist in closed-form. In such cases the sampling distributions may be approximated through Monte-Carlo simulations, bootstrap methods, or asymptotic distribution theory.

Read more about Sampling Distribution: Standard Error, Examples, Statistical Inference

### Famous quotes containing the word distribution:

“There is the illusion of time, which is very deep; who has disposed of it? Mor come to the conviction that what seems the succession of thought is only the *distribution* of wholes into causal series.”

—Ralph Waldo Emerson (1803–1882)