Risch Algorithm - Description

Description

The Risch algorithm is used to integrate elementary functions. These are functions obtained by composing exponentials, logarithms, radicals, trigonometric functions, and the four arithmetic operations (+ − × ÷). Laplace solved this problem for the case of rational functions, as he showed that the indefinite integral of a rational function is a rational function and a finite number of constant multiples of logarithms of rational functions. The algorithm suggested by Laplace is usually described in calculus textbooks; as a computer program it was finally implemented in the 1960s.

Liouville formulated the problem solved by the Risch algorithm. Liouville proved by analytical means that if there is an elementary solution g to the equation g′ = f then for constants αi and elementary functions ui and v the solution is of the form

Risch developed a method that allows one to consider only a finite set of elementary functions of Liouville's form.

The intuition for the Risch algorithm comes from the behavior of the exponential and logarithm functions under differentiation. For the function f eg, where f and g are differentiable functions, we have

so if eg were in the result of an indefinite integration, it should be expected to be inside the integral. Also, as

then if (ln g)n were in the result of an integration, then only a few powers of the logarithm should be expected.

Read more about this topic:  Risch Algorithm

Famous quotes containing the word description:

    The great object in life is Sensation—to feel that we exist, even though in pain; it is this “craving void” which drives us to gaming, to battle, to travel, to intemperate but keenly felt pursuits of every description whose principal attraction is the agitation inseparable from their accomplishment.
    George Gordon Noel Byron (1788–1824)

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)

    The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St Paul’s, like the editions of Balbec and Palmyra.
    Horace Walpole (1717–1797)