Classical branching rules describe the restriction of an irreducible representation (π, V) of a classical group G to a classical subgroup H, i.e. the multiplicity with which an irreducible representation (σ, W) of H occurs in π. By Frobenius reciprocity for compact groups, this is equivalent to finding the multiplicity of π in the unitary representation induced from σ. Branching rules for the classical groups were determined by
- Weyl (1946) between successive unitary groups;
- Murnaghan (1938) between successive special orthogonal groups and unitary symplectic groups;
- Littlewood (1950) from the unitary groups to the unitary symplectic groups and special orthogonal groups.
The results are usually expressed graphically using Young diagrams to encode the signatures used classically to label irreducible representations, familiar from classical invariant theory. Hermann Weyl and Richard Brauer discovered a systematic method for determining the branching rule when the groups G and H share a common maximal torus: in this case the Weyl group of H is a subgroup of that of G, so that the rule can be deduced from the Weyl character formula. A systematic modern interpretation has been given by Howe (1995) in the context of his theory of dual pairs. The special case where σ is the trivial representation of H was first used extensively by Hua in his work on the Szegő kernels of bounded symmetric domains in several complex variables, where the Shilov boundary has the form G/H. More generally the Cartan-Helgason theorem gives the decomposition when G/H is a compact symmetric space, in which case all multiplicities are one; a generalization to arbitrary σ has since been obtained by Kostant (2004). Similar geometric considerations have also been used by Knapp (2005) to rederive Littlewood's rules, which involve the celebrated Littlewood-Richardson rules for tensoring irreducible representations of the unitary groups. Littelmann (1995) has found generalizations of these rules to arbitrary compact semisimple Lie groups, using his path model, an approach to representation theory close in spirit to the theory of crystal bases of Lusztig and Kashiwara. His methods yield branching rules for restrictions to subgroups containing a maximal torus. The study of branching rules is important in classical invariant theory and its modern counterpart, algebraic combinatorics.
Example. The unitary group U(N) has irreducible representations labelled by signatures
where the fi are integers. In fact if a unitary matrix U has eigenvalues zi, then the character of the corresponding irreducible representation πf is given by
The branching rule from U(N) to U(N – 1) states that
Example. The unitary symplectic group or quaternionic unitary group, denoted Sp(N) or U(N, H), is the group of all transformations of HN which commute with right multiplication by the quaternions H and preserve the H-valued hermitian inner product
on HN, where q* denotes the quaternion conjugate to q. Realizing quaternions as 2 x 2 complex matrices, the group Sp(N) is just the group of block matrices (qij) in SU(2N) with
where αij and βij are complex numbers.
Each matrix U in Sp(N) is conjugate to a block diagonal matrix with entries
where |zi| = 1. Thus the eigenvalues of U are (zi±1). The irreducible representations of Sp(N) are labelled by signatures
where the fi are integers. The character of the corresponding irreducible representation σf is given by
The branching rule from Sp(N) to Sp(N – 1) states that
Here fN + 1 = 0 and the multiplicity m(f, g) is given by
where
is the non-increasing rearrangement of the 2N non-negative integers (fi), (gj) and 0.
Example. The branching from U(2N) to Sp(N) relies on two identities of Littlewood:
where Πf,0 is the irreducible representation of U(2N) with signature f1 ≥ ··· ≥ fN ≥ 0 ≥ ··· ≥ 0.
where fi ≥ 0.
The branching rule from U(2N) to Sp(N) is given by
where all the signature are non-negative and the coefficient M (g, h; k) is the multiplicity of the irreducible representation πk of U(N) in the tensor product πg πh. It is given combinatorially by the Littlewood-Richardson rule, the number of lattice permutations of the skew diagram k/h of weight g.
There is an extension of Littelwood's branching rule to arbitrary signatures due to Sundaram (1990, p. 203). The Littlewood-Richardson coefficients M (g, h; f) are extended to allow the signature f to have 2N parts but restricting g to have even column-lengths (g2i – 1 = g2i). In this case the formula reads
where MN (g, h; f) counts the number of lattice permutations of f/h of weight g are counted for which 2j + 1 appears no lower than row N + j of f for 1 ≤ j ≤ |g|/2.
Example. The special orthogonal group SO(N) has irreducible ordinary and spin representations labelled by signatures
- for N = 2n;
- for N = 2n+1.
The fi are taken in Z for ordinary representations and in ½ + Z for spin representations. In fact if an orthogonal matrix U has eigenvalues zi±1 for 1 ≤ i ≤ n, then the character of the corresponding irreducible representation πf is given by
for N = 2n and by
for N = 2n+1.
The branching rules from SO(N) to SO(N – 1) state that
for N = 2n+1 and
for N = 2n, where the differences fi - gi must be integers.
Read more about this topic: Restricted Representation
Famous quotes containing the words classical, branching and/or rules:
“Et in Arcadia ego.
[I too am in Arcadia.]”
—Anonymous, Anonymous.
Tomb inscription, appearing in classical paintings by Guercino and Poussin, among others. The words probably mean that even the most ideal earthly lives are mortal. Arcadia, a mountainous region in the central Peloponnese, Greece, was the rustic abode of Pan, depicted in literature and art as a land of innocence and ease, and was the title of Sir Philip Sidneys pastoral romance (1590)
“The moose will, perhaps, one day become extinct; but how naturally then, when it exists only as a fossil relic, and unseen as that, may the poet or sculptor invent a fabulous animal with similar branching and leafy horns ... to be the inhabitant of such a forest as this!”
—Henry David Thoreau (18171862)
“Under the rules of a society that cannot distinguish between profit and profiteering, between money defined as necessity and money defined as luxury, murder is occasionally obligatory and always permissible.”
—Lewis H. Lapham (b. 1935)