Theory
The theory for small, finite MDPs is quite mature. Both the asymptotic and finite-sample behavior of most algorithms is well-understood. As mentioned beforehand, algorithms with provably good online performance (addressing the exploration issue) are known. The theory of large MDPs needs more work. Efficient exploration is largely untouched (except for the case of bandit problems). Although finite-time performance bounds appeared for many algorithms in the recent years, these bounds are expected to be rather loose and thus more work is needed to better understand the relative advantages, as well as the limitations of these algorithms. For incremental algorithm asymptotic convergence issues have been settled. Recently, new incremental, temporal-difference-based algorithms have appeared which converge under a much wider set of conditions than was previously possible (for example, when used with arbitrary, smooth function approximation).
Read more about this topic: Reinforcement Learning
Famous quotes containing the word theory:
“Dont confuse hypothesis and theory. The former is a possible explanation; the latter, the correct one. The establishment of theory is the very purpose of science.”
—Martin H. Fischer (18791962)
“It is not enough for theory to describe and analyse, it must itself be an event in the universe it describes. In order to do this theory must partake of and become the acceleration of this logic. It must tear itself from all referents and take pride only in the future. Theory must operate on time at the cost of a deliberate distortion of present reality.”
—Jean Baudrillard (b. 1929)
“There could be no fairer destiny for any physical theory than that it should point the way to a more comprehensive theory in which it lives on as a limiting case.”
—Albert Einstein (18791955)