Structure For Finite Cyclic Groups
For a cyclic group C generated by g of order n, the matrix form of an element of K acting on K by multiplication takes a distinctive form known as a circulant matrix, in which each row is a shift to the right of the one above (in cyclic order, i.e. with the right-most element appearing on the left), when referred to the natural basis
- 1, g, g2, ..., gn−1.
When the field K contains a primitive n-th root of unity, one can diagonalise the representation of C by writing down n linearly independent simultaneous eigenvectors for all the n×n circulants. In fact if ζ is any n-th root of unity, the element
- 1 + ζg + ζ2g2 + ... + ζn−1gn−1
is an eigenvector for the action of g by multiplication, with eigenvalue
- ζ−1
and so also an eigenvector of all powers of g, and their linear combinations.
This is the explicit form in this case of the abstract result that over an algebraically closed field K (such as the complex numbers) the regular representation of G is completely reducible, provided that the characteristic of K (if it is a prime number p) doesn't divide the order of G. That is called Maschke's theorem. In this case the condition on the characteristic is implied by the existence of a primitive n-th root of unity, which cannot happen in the case of prime characteristic p dividing n.
Circulant determinants were first encountered in nineteenth century mathematics, and the consequence of their diagonalisation drawn. Namely, the determinant of a circulant is the product of the n eigenvalues for the n eigenvectors described above. The basic work of Frobenius on group representations started with the motivation of finding analogous factorisations of the group determinants for any finite G; that is, the determinants of arbitrary matrices representing elements of K acting by multiplication on the basis elements given by g in G. Unless G is abelian, the factorisation must contain non-linear factors corresponding to irreducible representations of G of degree > 1.
Read more about this topic: Regular Representation
Famous quotes containing the words structure, finite and/or groups:
“... the structure of our public morality crashed to earth. Above its grave a tombstone read, Be toleranteven of evil. Logically the next step would be to say to our commonwealths criminals, I disagree that its all right to rob and murder, but naturally I respect your opinion. Tolerance is only complacence when it makes no distinction between right and wrong.”
—Sarah Patton Boyle, U.S. civil rights activist and author. The Desegregated Heart, part 2, ch. 2 (1962)
“Any language is necessarily a finite system applied with different degrees of creativity to an infinite variety of situations, and most of the words and phrases we use are prefabricated in the sense that we dont coin new ones every time we speak.”
—David Lodge (b. 1935)
“Belonging to a group can provide the child with a variety of resources that an individual friendship often cannota sense of collective participation, experience with organizational roles, and group support in the enterprise of growing up. Groups also pose for the child some of the most acute problems of social lifeof inclusion and exclusion, conformity and independence.”
—Zick Rubin (20th century)