Rational Function - Taylor Series

Taylor Series

The coefficients of a Taylor series of any rational function satisfy a linear recurrence relation, which can be found by setting the rational function equal to its Taylor series and collecting like terms.

For example,

Multiplying through by the denominator and distributing,

After adjusting the indices of the sums to get the same powers of x, we get

Combining like terms gives

Since this holds true for all x in the radius of convergence of the original Taylor series, we can compute as follows. Since the constant term on the left must equal the constant term on the right it follows that

Then, since there are no powers of x on the left, all of the coefficients on the right must be zero, from which it follows that

Conversely, any sequence that satisfies a linear recurrence determines a rational function when used as the coefficients of a Taylor series. This is useful in solving such recurrences, since by using partial fraction decomposition we can write any rational function as a sum of factors of the form 1 / (ax + b) and expand these as geometric series, giving an explicit formula for the Taylor coefficients; this is the method of generating functions.

Read more about this topic:  Rational Function

Famous quotes containing the words taylor and/or series:

    Intense study of the Bible will keep any writer from being vulgar, in point of style.
    —Samuel Taylor Coleridge (1772–1834)

    History is nothing but a procession of false Absolutes, a series of temples raised to pretexts, a degradation of the mind before the Improbable.
    E.M. Cioran (b. 1911)