Rational Function - Abstract Algebra and Geometric Notion

Abstract Algebra and Geometric Notion

In abstract algebra the concept of a polynomial is extended to include formal expressions in which the coefficients of the polynomial can be taken from any field. In this setting given a field F and some indeterminate X, a rational expression is any element of the field of fractions of the polynomial ring F. Any rational expression can be written as the quotient of two polynomials P/Q with Q ≠ 0, although this representation isn't unique. P/Q is equivalent to R/S, for polynomials P, Q, R, and S, when PS = QR. However since F is a unique factorization domain, there is a unique representation for any rational expression P/Q with P and Q polynomials of lowest degree and Q chosen to be monic. This is similar to how a fraction of integers can always be written uniquely in lowest terms by canceling out common factors.

The field of rational expressions is denoted F(X). This field is said to be generated (as a field) over F by (a transcendental element) X, because F(X) does not contain any proper subfield containing both F and the element X.

Read more about this topic:  Rational Function

Famous quotes containing the words abstract, algebra, geometric and/or notion:

    If we take in our hand any volume; of divinity or school metaphysics, for instance; let us ask, Does it contain any abstract reasoning concerning quantity or number? No. Does it contain any experimental reasoning, concerning matter of fact and existence? No. Commit it then to flames: for it can contain nothing but sophistry and illusion.
    David Hume (1711–1776)

    Poetry has become the higher algebra of metaphors.
    José Ortega Y Gasset (1883–1955)

    New York ... is a city of geometric heights, a petrified desert of grids and lattices, an inferno of greenish abstraction under a flat sky, a real Metropolis from which man is absent by his very accumulation.
    Roland Barthes (1915–1980)

    The very notion of tabu is one of the rightest notions in the world. Better any old tabu than none, for a man cannot be said to be “on the side of the stars” at all, unless he makes refusals.
    Katharine Fullerton Gerould (1879–1944)