Systematic Versus Random Error
Measurement errors can be split into two components: random error and systematic error.
Random error is always present in a measurement. It is caused by inherently unpredictable fluctuations in the readings of a measurement apparatus or in the experimenter's interpretation of the instrumental reading.
Whereas, systematic errors are predictable, and typically constant or proportional to the true value. If the cause of the systematic error can be identified, then it can usually be eliminated. Systematic errors are caused by imperfect calibration of measurement instruments or imperfect methods of observation, or interference of the environment with the measurement process, and always affect the results of an experiment in a predictable direction. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.
The Performance Test Standard PTC 19.1-2005 “Test Uncertainty”, published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.
Read more about this topic: Random Error
Famous quotes containing the words systematic, random and/or error:
“Every nation ... whose affairs betray a want of wisdom and stability may calculate on every loss which can be sustained from the more systematic policy of its wiser neighbors.”
—James Madison (17511836)
“Man always made, and still makes, grotesque blunders in selecting and measuring forces, taken at random from the heap, but he never made a mistake in the value he set on the whole, which he symbolized as unity and worshipped as God. To this day, his attitude towards it has never changed, though science can no longer give to force a name.”
—Henry Brooks Adams (18381918)
“Truth is the kind of error without which a certain species of life could not live. The value for life is ultimately decisive.”
—Friedrich Nietzsche (18441900)